The Structure and Function of Lipid Raft in fMLP-stimulated neutrophil

Xiaojing Meng, Chunqing Cai, Qiong Luo, Fei Zou
Department of Occupational Hygiene and Occupational Medicine, School of Public Health and Tropical Medicine
Southern Medical University
No. 1838 Guangzhoudadaobei, Guangzhou, Guangdong 510515
Email: zhumeng@fimmu.com

KEY WORDS: polarity, CLSM, CTX-B, F-actin, TRPC1

Neutrophil polarization is required for neutrophil chemotaxis. Chemotactic stimulation of neutrophils induces a complex sequence of events: morphological changes, asymmetric redistribution of many proteins and lipids, and reconstruction of cellular structure. The signaling proteins, such as PI3K, small G protein, ARP2/3, coflin, profiling and etc., could direct the formation of lamellipodium, regulate the polymerization of F-actin and orchestrate the dynamic assembly of the front and the rear of polarized neutrophil. The exact point at which the signaling proteins could be associated is not known. However, a number of studies have shown that cholesterol- and glycolipid-enriched plasma membrane microdomains, so-called lipid rafts, are a recent focus of interest as organizers of signaling molecules. It was reported that neutrophil polarization was affected by the cholesterol in the membrane. Therefore, the change of lipid raft structure in fMLP-stimulated neutrophil was investigated by confocal laser scanning microscopy (CLSM or LSCM).

Polymorphonuclear neutrophils (PMNs) were isolated from whole blood donated by healthy volunteers by Dextran sedimentation. Cholera toxin B (CTx-B). In addition, the neutrophils were simultaneously stained with DAPI (targeting DNA in the cell nucleus). Figure 1 showed that the lipid raft was distributed around the edge of untreated neutrophil. After the stimulation of fMLP, lipid raft was localized on one edge of neutrophil, which indicated that there is the reconstruction of lipid raft in polarized neutrophil. It was reported that TRPC1 was involved in the regulation of directed cell migration. In our study, TRPC1 was distributed uniformly in untreated neutrophil membrane, and there is co-localization of TRPC1 with lipid raft in fMLP-stimulated neutrophil. After the lipid raft was disrupted by methyl-β-cyclodextrin (MβCD), the polarize distribution of TRPC1 was disappear in fMLP-stimulated neutrophil. Our study suggested that translocation TRPC1 to lipid raft is associated with the neutrophil polarization.

① This work was supported by grants from National Natural Science Foundation of China (No30672353, No. 30800438).