Selective Effect of Berberine on Tumor and Normal cell

Wang Yi, Hu Jianjiang, Lei Hongtao, Hou Yanming, Yu Youhua*
The Experimental Research Center, China Academy of Chinese Medical Sciences,
Dongcheng District, Beijing, 100700, China.
E-mail: wangyi02@gmail.com

Key Words: Selective Effect, Berberine, Fluorescence

The common approach of all chemotherapy is to decrease the growth rate (cell division) of the cancer cells, but most agents suffer side effects from their limited selectivity against cancer cells over healthy ones, which would decrease the living quality of cancer patients. Therefore, a “smart” anti-cancer drug with tumor cell selectivity is the dream from cancer clinic.

Berberine is a kind of alkaloid found in many medicinal plants of the Genera Berberis and Coptis Rhizoma. It is a folk medicine used in China as in treatment of dysentery, jaundice and hypertension. Recent advances have shown that berberine exerts anticancer activities both in vitro and in vivo through different mechanisms. In this study, the effect of Berberine on 3 pairs of normal and its cancerous cell was observed.

The result demonstrated that berberine at 10,5,2.5 μg/ml can inhibit the proliferation of tumor cell but had no obvious toxicity on normal cell. In order to trace the distribution of berberine in both normal and cancerous cell, cells were treated with berberine and the fluorescence signal of berberine was detected at 2 min interval for continuously 10 min at 488nm by confocal laser scanning microscope. The result showed that berberine could be observed in tumor cell in 10 min while the normal cells could not be detected. The disperse speed is various due to different tumor cell.

Our results showed that berberine could inhibit the proliferation of tumor cell while have no affect on normal cell. We hypothesise that cell membrane structure is different between normal and cancerous cell. Berberine could penetrate into tumor cell and start the trigger to decrease the proliferation rate of tumor cell. It has the potential to be a selective anti-cancer drug in the future. Further research is going on for its mechanism.