ANALYSIS OF OSMOTICALLY STIMULATED CELL SWELLING BY QUANTITATIVE DIGITAL HOLOGRAPHIC PHASE CONTRAST

B. Kemper¹, J. Klokkers², B. Edemir², P. Langehanenberg¹, S. Kosmeier¹, S. Ketelhut¹, A. Vollmer¹, E. Schlatter², G. von Bally¹

¹Center for Biomedical Optics and Photonics, University of Münster, Germany
Robert-Koch-Straße 45, D-48149 Münster
²Department of Internal Medicine D, University of Münster, Germany
Domagkstraße 3a, D-48149 Münster
*E-mail: bkemper@uni-muenster.de

KEY WORDS: Digital holographic microscopy, quantitative phase contrast imaging, cell swelling analysis

ABSTRACT
The quantitative analysis of osmotically stimulated cell swelling is important for the understanding of the cell membrane permeability and cell mechanics. Digital holographic microscopy (DHM) provides minimally invasive label-free quantitative phase contrast for dynamic monitoring of living cells with low demands on sample preparation [1-4]. Thus, it was investigated if DHM can be applied to quantify cell swelling due to osmotic stimulation. Primary rat kidney inner medullary collecting duct cells (IMCD cells) were cultured in a perfusion chamber and exposed to a hypoosmolar shock. The response of the cells to the osmolarity change was measured by time-lapse DHM investigations. Further DHM measurements the volume and the integral refractive index of suspended IMCD cells were determined. The obtained results demonstrate that DHM is a suitable method to characterize the regulation of water permeability of living cells.

Figure 1: Quantitative DHM phase contrast images of rat IMCD cells (coded to 256 gray levels). Left: before osmotic stimulation (600 mOsmol/kg), right: after decrease of the osmolarity to 200 mOsmol/kg.

ACKNOWLEDGEMENTS
Financial support by the German Federal Ministry of Education and Research (BMBF), Innovative Medical Research in the Medical Faculty of the University of Münster (IMF) and the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

REFERENCES