QUANTITATIVE FRAP - THE ROLE OF PHOTON FLUX AND THE LIMITS IMPOSED BY CELL PHOTODAMAGE

Jurek Dobrucki, Dominika Trembecka, Mateusz Kuzak

Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
dobrucki@mol.uj.edu.pl

Key words: Fluorescence Recovery After Photobleaching, GFP, phototoxicity, photoaddition, DNA photodenaturation

Background: Fluorescence recovery after photobleaching (FRAP) is a method widely used for measuring parameters characterizing the dynamic behaviour of proteins in situ, in live cells. Quantitative analysis of FRAP data is complicated by the fact that a variety of different photobleaching protocols and data analysis methods are used, and phototoxic effects are not fully controlled.

Goal: This work aims at identifying the critical parameters of FRAP protocols, which influence the recovery times and need to be controlled to facilitate inter-experiment data analysis.

Methods: Dynamics of low molecular weight fluorophores and GFP-tagged linker histone (H1) was investigated, using various FRAP protocols and experimental conditions.

Results: We demonstrate that changes in photon flux strongly influence recovery times, moreover slight movements of chromatin, nucleus and the cell introduce unexpectedly large systematic errors in recovery determinations [1]. High intensity of exciting laser light (which is used to avoid redistribution of the fusion protein during the bleach insult) is also a source of potential artifacts. Intense illumination can lead to undesirable photoactivated reactions, including photodenaturation of DNA [2], photoaddition of a fluorescent probe to cell components, and various forms of photodamage. These phenomena can occur not only when a low molecular weight fluorescent dye, which is known to generate singlet oxygen (like acridine orange or a ruthenium (II) phenanthroline complex) is subjected to excitation light, but also when a fluorescent protein (eGFP) is photobleached in live cells. Damage to cell constituents and probe photoaddition during FRAP experiments changes bound/free GFP-tagged protein ratio and may severely complicate quantitative interpretation of experimental results.

Conclusions: Using the same photon flux of the bleaching beam, and proper controls for photoaddition and phototoxic effects exerted by fluorescent probes are preconditions for quantitative analysis and inter-experiment comparisons of protein dynamic behaviour.

REFERENCES: