REDUCE SPHERICAL ABERRATION IN A POLARIZED PHOTON-PAIRS
CONFOCAL LASER SCANNING MICROSCOPE

Jheng-Syong Wu 1, Li-Ping Yu 2, Hsiu-Fong Chang 1,3,
Hon-Fai Yau 1 and Chien Chou 1,2

1 Department of Optics and Photonics, National Central University, Jhongli 320, Taiwan
2 Department of Biomedical Imaging and Radiological Sciences,
 National Yang-Ming University, Taipei 112, Taiwan
3 General Education Center, Science and Technology Institute of Northern Taiwan,
 Taipei 112, Taiwan
Corresponding author: cchou@ym.edu.tw

KEY WORDS: Confocal microscopy, optical heterodyne, linearly polarized photon-pairs
(LPPPs), spherical aberration, refractive-index mismatch

ABSTRACT
Refractive-index mismatch produced from a specimen in a conventional confocal microscopy results in severe degradation on axial resolution of the sectioning image. In this study, we propose the theory of spherical aberration reduction of a polarized photon-pairs confocal laser scanning microscope (PCLSM) in which a two-frequency paired polarized laser beam is used. The common-path configuration of the PCLSM integrated with optical heterodyne detection is able to reduce the spherical aberration in a specimen. Therefore, the axial resolution and the lateral resolution of the sectioning image are improved. In our experiments, we study the axial response of the PCLSM in which an oil-immersion objective is adopted and compare the results with that of a conventional confocal microscope. Finally, the ability of PCLSM which can decrease the spherical aberration associated with polarization gating, spatial coherence gating and spatial filtering gating is discussed.