DIFFERENTIAL-PHASE OPTICAL DOPPLER TOMOGRAPHY
FOR FLUID FLOW VELOCITY MEASUREMENT

Tsung-Yu Hsieh¹, Huan-Jang Huang², and Chien Chou¹²,*
¹ Institute of Biophotonics Engineering, National Yang-Ming University,
155, Sec.2, Li-Nong St., Beitou, Taipei, 112, Taiwan
² Institute of Radiological Sciences, National Yang-Ming University,
155, Sec.2, Li-Nong St., Beitou, Taipei, 112, Taiwan
* E-mail: cchou@ym.edu.tw

KEY WORDS: Optical Doppler tomography, differential-phase, low coherence, optical heterodyne, phase measurement.

ABSTRACT
We have developed a novel differential-phase optical Doppler tomography (DP-ODT) system that is able to measure the fluid flow velocity tomographically with high velocity resolution and sensitivity. By using a low-coherence light source and integrating with analog differential-phase detection technique, DP-ODT can achieve better performance in flow velocity measurement than numerical decoding methods based on Hilbert transformation.

METHOD
The proposed DP-ODT system employs a SLD (830 nm) as the light source and uses analog differential-phase decoding method in flow velocity determination. PZT is used to modulate the Doppler frequency shift of the reference light beam for optical heterodyne detection. The polarization-division interferometer setup used in DP-ODT is able to acquire the orthogonal heterodyne signals and the differential-phase signal which can be used to recover the velocity of the fluid flow precisely.

REFERENCES