Optical trapping and surgery of living yeast cells using a single laser

Jun Ando¹,², Godofredo Bautista¹, Katsumasa Fujita², Nicholas Smith³ and Vincent R. Daria¹
¹National Institute of Physics, University of the Philippines, Quezon City, 1101 Philippines
²Dept of Applied Physics, Osaka University, Suita-shi, Osaka 565-0871
³Dept of Frontier Biosciences, Osaka University, Suita-shi, Osaka 565-0871
E-mail : vdaria@nip.upd.edu.ph

KEY WORDS: Laser microsurgery, optical trapping, sub-cellular organelle manipulation

ABSTRACT: Near-infrared (NIR) lasers have recently found numerous applications in biomedical research due to their non-destructive or localized effects on cells and tissues. Using a continuous-wave (CW) NIR laser for optical trapping has been demonstrated as a contact-free and non-invasive tool for cell and organelle manipulation [1, 2]. Furthermore, recent developments in ultrafast technology of femtosecond-pulsed lasers have extended the application of NIR lasers to cellular surgery and stimulation [3, 4].

Here, we present optical trapping and surgery of living yeast cells using two operational modes of a single laser. Living yeast cells are exposed to focused CW and femtosecond-pulsed focused laser of 780 nm wavelength. We show that a focused laser beam operating in CW mode does not show any destructive effect on yeast cell wall, and can be used for non-invasive optical trapping and manipulation of single yeast cell. By changing the operation of the laser to femtosecond-pulsed mode, we show that a tightly focused beam dissects the yeast cell walls via non-linear absorption. Lastly, using the combined technique of optical surgery and trapping, we show intracellular organelle extraction and manipulation from a yeast cell. The technique established here will be useful as a simple method for both surgery and manipulation of living cells using a single laser beam.

Figure 1: Intracellular organelle extraction and manipulation using the combined technique of optical surgery and trapping.