The BrightEyes_TTM: an Open-Source Multi-Channel Time-Tagging Module for Single-Photon Laser-Scanning Microscopy

Alessandro Rossetta1,2,3, Mattia Donato1, Francesco Diotalevi4, Eli Slenders1, Sami Koho1, Alberto Diaspro3,5, Marco Crepaldi4 and Giuseppe Vicidomini1

1Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
2DIBRIS, University of Genoa, Genoa, Italy
3Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
4Electronic Design Laboratory, Istituto Italiano di Tecnologia, Genoa, Italy
5DIFI, University of Genoa, Genoa, Italy

E-mail: giuseppe.vicidomini@iit.it

KEY WORDS: FPGA, TDC, time-tagging, fluorescence lifetime image scanning microscopy, fluorescence lifetime fluctuation spectroscopy, SPAD array detection

Laser-scanning microscopy (LSM) is experiencing a high-tech revolution due to the introduction of high-throughput single-photon array detectors. These detectors gave access to an entirely new set of spatiotemporal information normally lost in conventional LSM, thus triggering a new imaging paradigm, the so-called single-photon LSM (SP-LSM). Nowadays, the specifications of single-photon array detectors are constantly improving, also thanks to the well-established single-photon-avalanche diode (SPAD) array technology [1]. Within this context, there is an increasing need for data acquisition platforms able to harvest the information provided by this new category of detectors. We refer in particular to multi-channel time-tagging modules capable of connecting to a single-photon LSM and cope with the mega-sized temporal information delivered in parallel by each element of the detector array.

Therefore, in order to fill the gap between detector array performances and the lack of a benchmarking data-acquisition architecture for single-photon LSM applications, we developed an open-source FPGA-based multi-channel time-tagging module (TTM) that can be upgraded, modified and customized to satisfy the always-growing needs of the microscopy-makers.

The TTM is a time-to-digital converter (TDC)-based real-time acquisition apparatus that works as a passive plug-and-play device and can be operated, with minimal modifications, in pre-existing LSM setups. To demonstrate its functioning, we connected the module to a SP-LSM equipped with a SPAD array detector, and we demonstrated that current specifications allow for fluorescence lifetime image scanning microscopy (FLISM)[2] and fluorescence lifetime fluctuation spectroscopy (FLFS)[3] experiments.