Decoding Optical Aberrations in Laser Scanning Microscopy via a Detector-Array: Towards a New Adaptive Optics Architecture

Sami Koho¹, Francesco Fersini¹, Giorgio Tortarolo¹, Martin J. Booth², and Giuseppe Vicidomini¹

¹Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
²Department of Engineering Science, University of Oxford, Oxford, UK

E-mail: giuseppe.vicidomini@iit.it

KEY WORDS: SPAD array detector, adaptive-optics, image scanning microscopy, deep-imaging

Fast detector arrays [1] and adaptive optics [2] are quickly revolutionizing fluorescence laser scanning microscopy (LSM). However, their combination to realize an easy architecture for high-resolution deep imaging has not been explored. Here, we show that the information provided by the detector-array about the detection/probing volume of a laser scanning microscope can also be used to directly assess optical aberrations without the need for a separate wavefront sensor. This information can be immediately integrated into the image reconstruction algorithm for image scanning microscopy (ISM) [3] to compensate for the optical aberrations occurring in the fluorescence emission path. It is possible to exploit the same information to correct aberrations in the excitation path with an adaptive optical element, such as a spatial light modulator or a deformable mirror. We believe that this can significantly simplify the implementation of adaptive optics techniques in laser-scanning microscopy.