A High Bandwidth Tapping Mode Atomic Force Microscope Controller implemented on Field Programmable Gate Array

Chih-Yu Kuan and Herming Chiueh

Abstract

Advanced microscopy technique has become an important research topic as people start to pay more attention to the study of the structure and dynamics of biological molecules. Among all the other advanced microscopy techniques, Atomic Force Microscopy (AFM) is unique in its capability of high-resolution imaging of vital biological samples in aqueous solutions. However, conventional AFM isn’t suitable to observing single-molecule biophysics due to two reasons: the low imaging frame rate and the disturbance force between sample and AFM probe. This research topic focuses on optimizing the design of the digital control circuits in Atomic Force Microscope system referring to other works that focus on increasing the bandwidth of AFM controller and lowering the disturbance force. When testing on a real AFM system, the proposed system is able to finish scanning a 256*256 pixel image with scanning range of 1.5*1.5 μm² in 6 seconds.

Keywords: High Speed AFM, Tapping Mode AFM, PID controller, Amplitude Detector, FPGA.

Fig. 1: System Architecture of Proposed AFM Controller.

Fig. 2: Empty BD track scanned by proposed AFM Controller.