LOW-POWER STED MICROSCOPY OF UPCONVERSION NANOPARTICLES DEPOSITED ONTO GRAPHENE-BASED MATERIALS

Simone Lamon1,2, Yiming Wu3, Qiming Zhang1, Xiaogang Liu3,4, Min Gu1,2

1Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2Laboratory of Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne 3001, Australia
3Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
4The N.1 Institute for Health, National University of Singapore, Singapore, 117456, Singapore

E-mail: simone.lamon@rmit.edu.au

KEY WORDS: STED microscopy, upconversion nanoparticles, graphene-based materials.

1. BACKGROUND

Upconversion nanoparticles (UCNPs) can convert near-infrared excitation into visible and ultraviolet emissions, making them promising for optical microscopy imaging. UCNPs have recently been used to achieve nanometre-scale optical resolution through low-power STED microscopy \cite{1}. The combination of UCNPs with suitable materials enables innovative functionality for biology and photonic applications. Here, we report on low-power STED microscopy of UCNPs deposited on graphene-based materials.

2. RESULTS AND DISCUSSION

Using a 980-nm excitation beam with a Gaussian shape and an 808-nm depletion beam with a doughnut shape, we imaged UCNPs on graphene-based materials using STED microscopy. We have achieved a saturation intensity of ~0.4 MW cm-2 and a lateral feature size of <50 nm, offering new avenues for the nanoscale use of functionalized UCNPs.

![Figure 1](image)

Figure 1: A) Confocal and STED microscopy of UCNPs deposited on graphene-based materials. (B) Intensity profiles along the dashed lines in A.

3. REFERENCES