A PLANAR AIRY LIGHT-SHEET FOR TWO-PHOTON MICROSCOPY

N. A. Hosny1, J. A. Seyforth1, G. Spickermann1, T. J. Mitchell1, P. Almada1, R. Chesters2, S. J. Mitchell2,3, G. Chennell2, A. C. Vernon2,4, K. Cho2,3, D. P. Srivastava2,4, R. Forster1, T. Vettenburg5,6,*

1M Squared Life, The Surrey Technology Centre, Guildford, Surrey, GU2 7YG, UK
2Basic and Clinical Neuroscience Dept, King's College London, SE5 9NU, UK
3UK Dementia Research Institute, King's College London, UK
4MRC centre For Neurodevelopmental Disorders, King's College London, UK
5School of Physics and Astronomy, University of Exeter, EX4 4QL, UK
6School of Science and Engineering, University of Dundee, DD1 4HN, UK
*Corresponding Author: t.vettenburg@dundee.ac.uk

KEY WORDS: light-sheet fluorescence microscopy, propagation invariant beam shaping.

1. INTRODUCTION

Light-sheet fluorescence microscopy enables high resolution optical sectioning of biological samples. Unlike confocal and two-photon microscopes, a light-sheet microscope illuminates the focal plane with an objective orthogonal to the detection axis. To uniformly illuminate a wide field-of-view without compromising axial resolution, propagation-invariant light-fields such as Bessel and Airy beams have been proposed1,2. These beams do however irradiate the sample with a relatively broad transversal structure. With single-photon excitation, the detailed transversal structure of the Airy beam captures the high-frequency components that contribute positively to the axial resolution. However, this advantage does not carry over when switching to two-photon excitation, where its fine transversal structure is suppressed2,3. Here, we propose a symmetric and planar Airy light-sheet for two-photon excitation.

2. DECONVOLUTION-FREE AIRY LIGHT-SHEET MICROSCOPY

The Airy beam can be transformed into a virtual light-sheet by rapidly scanning. Unlike most other beams, it forms a curved light-sheet with a parallel structure that contribute to single-photon excitation image formation. This does rely on digital deconvolution and the correction of the curvature of the image in a post-processing step. The additional complexity can be avoided with a straightforward 45°-rotation of the modulating element so that the Airy beam accelerates transversally in the direction of the virtual light-sheet scan. The resulting planar Airy light-sheet is symmetric and consists of a single bright central core. This obviates the need for geometric curvature correction as well as any form of deconvolution. It combines the simplicity of the Gaussian light-sheet with the propagation invariance of the Airy beam. We demonstrate the method with rapid two-photon imaging of large volumes of brain tissue4.

3. CONCLUSION

We proposed the planar Airy light-sheet for uniform two-photon excitation light-sheet microscopy across a wide field-of-view. A straightforward rotation of one element ensures that the light-sheet is both planar and symmetric. This eliminates the need for deconvolution and significantly simplifies the dual-use single and two-photon imaging instrument.

4. REFERENCES