THREE-DIMENSIONAL IMAGING
OF ARBITRARY ORBITAL ANGULAR MOMENTUM POLARIZED FIELDS
BY VECTORIAL PTYCHOGRAPHY

Arthur Baroni, Virginie Chamard, Patrick Ferrand*
Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
*Email: patrick.ferrand@fresnel.fr, www.fresnel.fr/comix

KEY WORDS: polarization, wavefront sensing, vortex beams, quantitative phase imaging

Orbital angular momentum (AOM) beams are special kinds of beams possessing a phase transverse distribution that rotates with time. Their ability to generate novel light-matter interactions opens new exciting perspectives in non-linear and quantum optics. Although they are relatively easy to be made in the laboratory, their complete characterization is challenging, involving commonly an interaction with a calibrated diffractive element. [1]

Here we propose to extend vectorial ptychography, a recently developed reference-free quantitative imaging method [2,3], to the full characterization of arbitrary polarized field distributions. We succeed in mapping at a microscopic resolution the phase, amplitude and state of polarization of an arbitrary AOM beam. This exhaustive knowledge allows to monitor precisely any defect present in the experimental beam, and to reconstruct its 3D structure (Fig. 1)

Figure 1. Left: Reconstructed phase front of an experimental OAM beam, as measured by vectorial ptychography (units in µm). **Right:** Corresponding map of its state of polarization. From [4]

Fundings: European Research Council (ERC), European Union’s Horizon H2020 research and innovation program grant agreement No 724881.