Pulsed-Interleaved MINFLUX as a New Implementation for Super-Resolved Localization of Single Molecules

Florian Steiner*, Luciano A. Masullo2,3, Jonas Zähringer1, Lucia Lopez2, Fernando Stefani2,3, Philip Tinnefeld1

1Department Chemie and Center of Nanoscience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
2Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Godoy Cruz 2390, C1425FQD, Buenos Aires, Argentina
3Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1 Ciudad, Universitaria, C1428EHA, Buenos Aires, Argentina

*corresponding author, E-mail: florian.steiner@cup.lmu.de

KEY WORDS: Super-resolution, fluorescence lifetime imaging, single-molecule localization and tracking, DNA-origami

Super-resolution microscopy techniques like STED and STORM/PALM have revolutionized the use of optical microscopes to study biological systems at dimensions well below the diffraction limit [1]. The latest development in super-resolution is MINFLUX and combines the stochastic and deterministic nature of the basic techniques. The nanoscale localization resolution to ~1nm is obtained in MINFLUX with a lower number of photons by optimizing the information gained by the detected photons via spatially patterned illumination [2]. Here, we introduce a novel implementation of MINFLUX, combining spatial point spread function engineering with pulsed interleaved excitation to reach a localization precision down to ~1nm for the emitter with an increased temporal resolution. This simple and robust implementation is based on time-correlated single-photon counting, hence it is fully compatible with fluorescence life-time imaging. We will present the basic principle of the setup and first results showing the localization performance for single-molecules as well as how to follow a DNA acrobat [3] walking across a DNA-origami surface.

References