Deep-UV microscopy with lanthanide ions for biomolecular imaging

Yasuaki Kumamoto1,2, Tatsuya Matsumoto2, Hideo Tanaka2, Tetsuro Takamatsu2,3, Nicholas Isaac Smith4, Katsumasa Fujita1,2, Satoshi Kawata1,5

1Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; 2Department of Pathology and 3Department of Medical Photonics, Kyoto Prefectural University of Medicine, 465 Kajiicho, Kawaramachi-Hirokoji, Kyoto 602-8566, Japan; 4Osaka University Immunology Frontier Research Center, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; 5Nanophoton Corporation, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

E-mail : kumamoto@ap.eng.osaka-u.ac.jp

KEY WORDS: Deep UV, Terbium ion, Biomolecular imaging, Molecular protection, Slide-free pathology

ABSTRACT

Deep-UVA light is highly interactive with materials. This strong interaction allows biological imaging with high contrast by deep-UV microscopy, whereas such interaction unfortunately tends to cause sample photodamage during measurement [1]. In the last decade, it has become possible to suppress the sample photodamage [2,3], thanks to scientific and technological advances in deep-UV photonics and optics. Such advances include uses of terbium ions for suppressing the sample photodamage under light exposure [4]. This sample protection method has enabled deep-UV resonance Raman imaging of a cell [4,5].

Recently we found that terbium ions could fluorescently label ribonucleic acid at deep-UV excitation [6]. Bright fluorescence from terbium ions conjugated to ribonucleic acid highlights such subcellular structures as the nucleolus and cytoplasm. This labeling technique is easy, quick, and reproducible. Furthermore, it allows combinational use with deoxyribonucleic acid stains for multicolor fluorescence imaging at deep-UV excitation. We will discuss potential usefulness of this combinational labeling for rapid cancer detection using a surgical specimen; optical sectioning of an unsliced tissue block is implemented with a wide-field microscope configuration since deep-UV light does not deeply penetrate into a tissue due to the strong interaction.

REFERENCES