HIGH-RESOLUTION LOCALIZATION AND FUNCTION OF AUXIN CARRIERS WITHIN THE PLASMA MEMBRANE LANDSCAPE

Kateřina Malínská, Ayoub Stelate, Martina Laňková, Karel Müller, Roberta Filepová, Zuzana Vondráková, Katarzyna Retzer and Jan Petrášek

1The Czech Academy of Sciences, Institute of Experimental Botany, Rozvojová 263, 165 02 Prague 6, Czech Republic
2Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
E-mail: petrasek@ueb.cas.cz

KEY WORDS: Tobacco BY-2 cells, auxin carriers, confocal laser scanning microscopy, confocal spinning disk microscopy, fluorescence recovery after photobleaching, total internal reflection fluorescence, super resolution radial fluctuations

Although a numerous developmental roles of PINFORMED (PIN) auxin efflux carriers are well established, there is still very limited knowledge on mechanisms defining their distribution and function within the plasma membrane (PM). In our recent work, we have followed PIN nanodomain organization and dynamics within the PM using tobacco BY-2 cultured cells by confocal laser scanning microscopy (CLSM) and spinning disk microscopy (SD). We use our previously established approach [1], combining fluorescence recovery after photobleaching (FRAP) and raster image correlation spectroscopy (RICS) to show that the dynamics of individual auxin carriers differs. Super-resolution microscopy approach using total internal reflection fluorescence (TIRF) followed by the application of super-resolution radial fluctuations (SRRF) algorithm (Figure 1, upper row) and Airyscan CLSM (Figure 1, bottom row) allowed us to unravel variable appearance of NtPIN2-GFP and NtPIN11-GFP in PM nanodomains. Image analysis-based quantification of these distributions showed that NtPIN11 nanodomains were less dynamic and less clustered in comparison with NtPIN2 nanodomains, suggesting variable, protein-specific dynamics between individual nanodomains. Importantly, we show by auxin transport assays that this differential mobility might affect auxin efflux function. Our results suggest novel regulation of function for members of PIN family, based on their differential stabilization within PM. Altogether, high-spatial resolution imaging within the PM opens a truly new horizons, helping significantly to define the functional importance of nanodomain presence for individual plant PM proteins.