IMAGING RED BLOOD CELLS USING A PHASE EXTRACTION NEURAL NETWORK (PHENN)

Shuai Li, Alexandre Goy, and George Barbastathis

1Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 117543, Singapore.
E-mail: shuaili@mit.edu

KEY WORDS: Phase retrieval, optical microscopy, neural network, red blood cells.

ABSTRACT
Phase extraction neural network (PhENN) [1] is a deep learning architecture that can be used to recover an unknown phase object given the intensity measurement obtained some distance away. Here, we apply PhENN to image red blood cells (RBCs), which are almost transparent under visible light. Specifically, we build up an optical microscope and place a CMOS camera in a defocused plane to capture the diffracted intensity patterns. Moreover, we insert a spatial light modulator (SLM) right at the conjugate plane of the sample plane to generate training objects. We find that while PhENN is trained on examples drawn exclusively from the ImageNet [2] database, which consists of natural images, it performs well on recovering RBC samples. This result demonstrates the generalizability of PhENN, indicating that our version of PhENN has learned at the very least a generalizable mapping of low-level textures between the phase objects and their respective intensity images.

References: