SCALABLE ENCODED MICROSCOPY FOR OPTICAL IMAGING OF THE BRAIN

Peter Saggau1,2
1Baylor College of Medicine
2Italian Institute of Technology
One Baylor Plaza, Houston, TX, USA
Via Morego 30, Genoa, Italy
E-mail: saggau2@gmail.com

KEY WORDS: encoded microscopy, scalable imaging, high throughput, brain imaging

One of the utmost tasks in life sciences remains to reverse-engineer the mammalian brain. The biggest obstacles of this task are the large number and small size of cellular brain elements and the high complexity of their connections. Traditional ways of exploring the function of neuronal systems, e.g. with microelectrodes, are limited to small neuron populations and simple networks and thus not suited for this task.

To overcome these limitations when studying the living brain, innovative approaches increasingly rely on advanced optical imaging techniques, employing specific molecular probes which are engineered to be activated and interrogated by photons. This requires appropriate optical techniques that extend beyond both spatial resolution to distinguish neuronal elements and temporal resolution to monitor neuronal signaling. In fact, to account for the inherent non-linear and non-stationary nature of brain signaling, multiple neuronal sites need to be probed simultaneously.

Encoded microscopy is an elegant method to achieve simultaneous multi-site imaging. In this approach, multiple excitation beams are time- or frequency-encoded and the resulting emission signals are detected by a single sensor and decoded into multiple beam-associated channels with high spatio-temporal resolution. I will present advanced approaches of encoded microscopy suited to analyze structure, function and connectivity in different preparations. Emerging techniques of encoded high-throughput imaging systems to study large populations of neurons will be discussed.