Tag-PAINT: Stoichiometric and covalent labelling via protein tags for quantitative DNA-PAINT imaging

D. J. Nieves1,2*, G. Hilzenrat1,2, J. Tran1,2, Z. Yang1,2, J. J. Gooding3 & K. Gaus1,2

1 EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney

2ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, Australia

3School of Chemistry, Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, Australia

*email: d.nieves@unsw.edu.au

KEYWORDS: DNA-PAINT, protein-tagging, quantitative SMLM, T-cells

An important challenge for single molecule localization microscopy (SMLM) when attempting quantitative measurements is control over the stoichiometry of the label to the molecule of interest [1]. Recently, DNA-PAINT imaging has been extended to allow quantitative measurements of protein complexes within cells via qPAINT [2]. Here, protein tags (Halo- and SNAP-tags) are used in combination with oligonucleotide functionalised ligands to achieve stoichiometric and covalent labelling of proteins of interest. Multiplexed DNA-PAINT on a variety of cellular targets is demonstrated along with qPAINT imaging of T cell receptor signalling proteins within the plasma membrane.

Fig1. a) Principle of Tag-PAINT. Tagged proteins are labelled with oligonucleotide-bearing ligands, allowing docking of complementary fluor-labelled imaging strands. b) Convolved Tag-PAINT image of single CD3ζ chains in the plasma membrane of Jurkat T-cell. Scale bar = 100 nm.

References
