REAL-TIME OPTICAL MANIPULATION OF CARDIAC CONDUCTION IN INTACT HEARTS

Caroline Müllenbroich1,2,†, Marina Scardigli1,2, Francesco Giardini1,2, Valentina Biasci1,2, C. Ferrantini3, R. Coppini3, L. M. Loew4, E. Cerbai4, C. Poggesi3, G. Bub6, F. S. Pavone1,2,7, Leonardo Sacconi1,2

1National Institute of Optics, National Research Council
Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
2European Laboratory for Non-linear Spectroscopy (LENS)
Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
3Division of Physiology, Dep. of Exp. \& Clinical Medicine, University of Florence, Italy;
4Division of Pharmacology, Department “NeuroFarBa,” University of Florence, Italy;
5R. D. Berlin Center for Cell Analysis \& Modeling, University of Connecticut Health Center, Farmington, CT, USA;
6Department of Physiology, McGill University, Montreal, Quebec, Canada;
7Department of Physics and Astronomy, University of Florence, Italy.

†Current address: School of Physics and Astronomy, University of Glasgow, G12 8QQ, UK
E-mail: Caroline.Muellenbroich@glasgow.ac.uk

KEY WORDS: cardiac imaging, cardiac optogenetics, real-time, closed-loop

Optogenetics, a combination of targeted light and gene delivery originating in the neurosciences, has provided novel insights also in cardiovascular research \cite{Arrenberg2010, Bruegmann2010}. Interventions like cardiac pacing, resynchronization therapy and cardioversion have clearly demonstrated the feasibility of cardiac manipulation using light. A want of current methodologies, however, was the possibility to react to cardiac wave dynamics in real time. Here, we present a platform for optical mapping and optogenetic stimulation of intact mouse hearts which has been complemented with integrated software to monitor and control electrical activity in a closed-loop approach \cite{Scardigli2018}. The system comprises a wide-field mescoscope with a digital projector for customizable optogenetic activation. Cardiac function can be manipulated either with sub-millisecond temporal resolution in free-run mode or else in a closed-loop fashion where the platforms allows for real-time intervention capable of reacting within 1ms \cite{Giardini2019}.

We demonstrate the capabilities of the methodology by restoring normal electrical activity after atrioventricular block and real-time intra-ventricular manipulation of electrical wavefront propagation, the latter opening prospects for real-time resynchronization therapy and cardiac defibrillation. Finally, we applied the closed-loop approach to simulate a re-entrant circuit across the ventricle which demonstrates the high versatility of our system to manipulate healthy heart conduction towards arrhythmogenic conditions. This platform promises an exciting new approach to investigate the (patho)physiology of the heart.

\cite{Arrenberg2010, Bruegmann2010, Scardigli2018, Giardini2019}