NANOJ: HIGH-PERFORMANCE OPEN-SOURCE SUPER-RESOLUTION MICROSCOPY ANALYSIS IN IMAGEJ

Romain Laine1,2, Kalina Tosheva1,2, Robert D. M. Gray1,2, Pedro Almada1,2, David Albrecht1,2, Jason Mercer1,2, Christophe Leterrier3, Pedro M. Pereira1,2, Siân Culley1,2, Ricardo Henriques1,2

1MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
2Department of Cell and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK
3Aix Marseille Université, CNRS, NICN UMR7259, 13344 cedex 15, Marseille, France
E-mail: r.henriques@ucl.ac.uk

KEY WORDS: ImageJ, Fiji, Super-resolution microscopy, Image analysis, Image quality assessment, Fluidics, Quantitative imaging, Modelling

Super-resolution microscopy has become essential for the study of nanoscale biological processes. This type of imaging often requires the use of specialised image analysis tools to process a large volume of recorded data and extract quantitative information. In recent years, our team has built an open-source image analysis framework for super-resolution microscopy designed to combine high performance and ease of use. We named it NanoJ - a reference to the popular ImageJ software it was developed for. In this talk I will highlight the current capabilities of NanoJ1 for several essential processing steps including super-resolution image reconstruction (NanoJ-SRRF)2, image quality assessment (NanoJ-SQUIRREL)3, structural modelling (NanoJ-VirusMapper)4 and control of the sample environment (NanoJ-Fluidics)5.

References: