TIME-RESOLVED IMAGE SCANNING MICROSCOPY WITH A SPAD ARRAY

Marco Castello, Giorgio Tortarolo, Colin J. R. Sheppard, Mauro Buttafava, Federica Villa, Takahiro Deguchi, Sami Koho, Paolo Bianchini, Alberto Diaspro, Alberto Tosi, Giuseppe Vicidomini

Molecular Microscopy and Spectroscopy, Istituto Italiano di Tecnologia, Genoa, Italy
Nanoscopy, Istituto Italiano di Tecnologia, Genoa, Italy
Università degli Studi di Genova, Genoa, Italy
DEIB, Politecnico di Milano, Milan, Italy
Email: giuseppe.vicidomini@iit.it

KEY WORDS: image scanning microscopy, fluorescence lifetime imaging, SPAD array.

ABSTRACT:
Image scanning microscopy (ISM) represents one of the strategies to overcome the traditional compromise between signal-to-noise ratio and lateral resolution in confocal microscopy [1]. Recently, we successfully implemented ISM through modifications introduced on the detection plane of a standard confocal laser scanning microscopy (CLSM). We replaced the single detector with a novel SPAD (single-photon avalanche diode) array of 25 detectors (5 by 5 matrix).
Furthermore, we developed strategies based on pixel reassignment and image deconvolution to process the acquired data [2], demonstrating a spatial resolution improvement from ~230nm to ~170nm (far-red region), confirmed by our Fourier ring correlation (FRC) analysis [3]. In particular, we developed a totally blind method that does not require any calibration of the system (i.e. the measurement of the size of the detector on the object plane before imaging) and compensates for a non-perfect alignment of the detector.
In this work, we are presenting the extension of the technique to fluorescence-lifetime imaging microscopy (FLIM). In fact, our SPAD array can be used to perform time-resolved measurements since each of its elements is able to signal the arrival of photons with a time jitter having FWHM < 200ps.
For this purpose, we implemented a multi-channel time-correlated single-photon counting (TCSPC) system able to work at high photon-rate (4 MHz on the entire array). The TCSPC measurement results into a series of three-dimensional fluorescence decay images (the third dimension is photon arrival time), one for each element of the array, that are fused together to obtain the final super-resolved FLIM image. This is possible by extending the blind method described for imaging.
Further work will be devoted to increasing the maximum photon-rate and moving to real-time FLIM imaging (i.e. real-time calculation of the lifetime image).

REFERENCES: