Kramers-Kronig digital holographic microscopy

YoonSeok Baek¹, YongKeun Park¹

¹Departments of Physics, Korea Advanced Institutes of Science and Technology, Daejeon
305-701, Republic of Korea
Email: lovebaek@kaist.ac.kr

Key words: digital holographic microscopy, space-bandwidth product

The Space-bandwidth product (SBP) [1] of an imaging system corresponds to the quantity of information transmitted through the system. The SBP of light through a microscope reaches up to tens of megapixels. To detect whole information without a loss, the SBP of a detector, or a number of pixels, must be greater than the SBP of a signal to detect. However current commercialized imaging sensors have few megapixels, which inevitably loses the information. This becomes a greater issue for digital holographic microscopy where the SBP of the interferogram reaches up to a hundred megapixels.

Here we present a novel digital holographic microscopy that provides a four-fold increase in the SBP of a holographic image detected by the off-axis digital holographic microscopy. By exploiting the Kramers-Kronig relations, the proposed method retrieves a complex amplitude at the sample plane.

The validity of the proposed method is demonstrated by comparing the performance of the proposed method with that of the off-axis digital holographic microscopy [2] using various microscopic samples.

Reference