MODIFIED APTAMERS ENABLE QUANTITATIVE SUB-10 NANOMETER CELLULAR DNA-PAINT IMAGING

Sebastian Strauss¹,²,*, Philipp C. Nickels¹,², Maximilian T. Strauss¹,², Vilma J. Sabinina³, Jan Ellenberg³, Jeffrey D. Carter⁴, Shashi Gupta⁴, Nebojsa Janjic⁴, and Ralf Jungmann¹,²

¹ Department of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
² Max Planck Institute of Biochemistry, 82152 Martinsried Germany
³ Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
⁴ SomaLogic, Inc., Boulder, Colorado 80301, United States of America
*E-mail: sstrauss@biochem.mpg.de

KEY WORDS: labeling reagents, super-resolution, DNA-PAINT, aptamers, quantitative imaging

Advances in optical super-resolution techniques make it possible to image biological processes below the classical diffraction limit of light. DNA Points Accumulation in Nanoscale Topography (DNA-PAINT) is a simple implementation of single-molecule localization microscopy with spatial resolution better than 5 nm demonstrated on artificial DNA nanostructures [1]. However, this resolution is not easily translated to imaging cellular targets since commonly used labeling probes are relatively large (~150 kDa in case of antibodies) or only available for a limited number of targets (Nanobodies). Here, we use Slow-Off-rate Modified Aptamer (SOMAmer) reagents [2] as small (7-30 kDa), quantitative, and versatile labeling probes. These DNA aptamers contain modified bases with hydrophobic residues facilitating higher specificity and affinity against a wide range of protein targets [3]. In addition, SOMAmer reagents can be easily extended with a single fluorophore or DNA-PAINT docking site providing the capability of quantitative super-resolution microscopy on a single protein level.

We successfully demonstrate two different SOMAmer labeling probes for DNA-PAINT: (1) against the transmembrane protein EGFR (Figure 1) in A431 cells and (2) against GFP demonstrated in a Nup107-GFP HeLa cell line.

References