Global BioImaging is building new e-learning modules in MyScope™

Mohammedayaz Rangrez*, Jennifer Whiting, Rainer Pepperkok, Antje Keppler, and Jan Ellenberg

The imaging landscape has changed significantly in the last 10 years and the concept of user open access to cutting-edge technologies has become more and more valued and well recognized. After the successful start of Euro-BioImaging Interim Operation, European scientists are now starting to collaborate with imaging experts around the globe, to further open and improve the provision of imaging services for biological and medical researchers everywhere. The Global BioImaging (GBI) project builds on long-standing collaborations of Euro-BioImaging with its international partners, such as the Australian Microscopy and Microanalysis Research Facility (AMMRF). In addition to provision of physical user access to technology platforms, AMMRF operates a well-known virtual training platform, MyScope™ (www.ammrf.org.au/myscope), for training its users in imaging technologies, educating 100,000 students every year. Though being very successful and gathering many diversified users from all the continents, MyScope™ misses some latest key technologies in advanced light microscopy, which are more and more requested by researchers. Hence, GBI partners, together with AMMRF, are now developing new e-learning modules in MyScope™ for recent imaging technologies, such as for super resolution and light sheet microscopy. Super-resolution microscopy is gathering popularity among scientists who want to explore nanostructures inside living cells. It is not a single technique but rather a set of different microscopy techniques that are employing different means to achieve a common goal - resolution below the diffraction limit of 200 nm. As it is one of the most requested technologies by life scientists, the GBI project is establishing first an e-learning module for super resolution microscopy. Initially, GBI will focus on those well-established super resolution techniques i.e. Single Molecule Localization Microscopy (SMLM), Stimulated Emission Depletion (STED), and Structured Illumination Microscopy (SIM).