DNA ORIGAMI: A VERSATILE CALIBRATION STANDARD FOR QUANTITATIVE SUPER-RESOLUTION MICROSCOPY

Francesca Cella Zanacchi1,2,*, Carlo Manzo1, Angel Sandoval Alvarez1, Nathan D. Derr3, Maria Garcia Parajo1,4, Melike Lakadamyali1

1 ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
2 Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
3 Smith College, 44 College Lane, Northampton, MA 01063, USA
4 ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain

*current address: Italian institute of technology (IIT), Genoa, Italy

francesca.cella@icfo.eu

KEY WORDS: super-resolution, single molecule localization microscopy, DNA origami

Single molecule based super-resolution microscopy offers a unique opportunity for quantifying protein copy numbers at the nanoscale level [1,2]. While fluorescent proteins have been extensively characterized for quantitative imaging using calibration standards, similar calibration tools for small organic fluorophores used in conjunction with immunofluorescence based super-resolution techniques (such as stochastic optical reconstruction microscopy, STORM) are missing. The development of a suitable calibration method represents the best way to address the challenges of molecular counting using super-resolution [3,4]. Within this project, we demonstrate that DNA origami in combination with GFP antibodies is a versatile platform for quantifying protein copy number in immunofluorescence based super-resolution microscopy. We show that this calibration method, besides quantifying the average protein copy number in a cell, allows determining the abundance of various oligomeric states. Furthermore, we apply this calibration method to quantify nucleoporins (NUP107) [5] and molecular motors (dynein intermediate chain) [6] in vivo. Overall, we provide a versatile strategy [7] for quantifying a large number of proteins of interest using various labeling approaches.

7. Cella Zanacchi et al., DNA Origami: Versatile super-resolution calibration standard for quantifying protein copy-number (under review)