CAPTURING LIGHT FIELDS IN LIGHT SHEET MICROSCOPES

Ruth Sims1,2, Martin O. Lenz1, Leila Muresan1, Sohaib Abdul-Rehman1, Stefanie Reichelt2, Kevin O’Holleran1

1Cambridge Advanced Imaging Centre, University of Cambridge
2Cancer Research UK – Cambridge Institute
E-mail: rs803@cam.ac.uk

KEY WORDS: Light sheet, light field, high-throughput imaging, developmental biology

The benefits of fluorescence light sheet microscopy include fast volumetric imaging with relatively low photo-bleaching which has led to a rapid increase of its use in developmental biology and neuroscience \cite{Huisken2009}. There are, however, experiments which require greater spatio-temporal resolution than can be achieved using typical light sheet microscopes.

The acquisition rates of light sheet microscopy can be increased by capturing light fields; that is, capturing angular information in addition to intensity counts. Raw light fields are collected on a two-dimensional sCMOS sensor using an array of microlenses placed in the image plane \cite{Broxton2013} of an existing light sheet setup. We have developed an efficient workflow in which four-dimensional light fields are automatically extracted from two-dimensional experimental data sets and manipulated to generate volumetric images.

Further, we demonstrate the benefits of optimising the form of light sheet illumination for enhancing reconstructions of fluorescent beads and also model organisms such as drosophila larvae and zebrafish which require fast volumetric imaging for developmental studies.
