LIVE-CELL SUPER-RESOLUTION 4D IMAGING USING MULTIFOCUS 3D SIM

Sara Abrahamsson¹², Aurelie Jost¹, Kristoffer Bernhem², Hans Blom², Rainer Heintzmann³, Cori Bargmann¹ and Hjalmar Brismar²
¹The Rockefeller University, New York, NY, USA
²Science for Life Laboratory, Stockholm, Sweden
³Friedrich-Schiller University Jena, Germany
E-mail: sara.abrahamsson@gmail.com

KEY WORDS: Living cells, 4D-imaging, super-resolution microscopy, multifocus microscopy, 3D structured illumination microscopy.

1. MULTIFOCUS 3D SIM

Volumetric acquisition speed is a major challenge in the nascent field of live-cell super-resolution microscopy. Three-dimensional Structured Illumination Microscopy (3D-SIM) provides optical sectioning capability and improvement of lateral and axial resolution. 3D-SIM has been applied in living specimens for 3D time-lapse (4D) imaging at moderate acquisition rates (seconds per image) [1, 2]. By constructing an imaging system that integrates 3D-SIM with the instant 3D imaging method Multifocus Microscopy (MFM) [3] we have created a microscope that pushes the acquisition speed of 3D-SIM by an order of magnitude. We demonstrate that MF-SIM provides unique possibilities for 4D super-resolution imaging of dynamic processes in living specimens.

2. HUMAN EMBRYONAL KIDNEY CELL IMAGED USING MF-SIM

Figure 1: MF-SIM data set of a HEK cell (GFP mitochondria) simultaneously recorded from 9 focal planes. Instead of 9x15 = 135 images, as would be required in conventional 3D SIM, only fifteen images of the illumination sequence are now required for a full reconstruction of the 3D volume.

References: