SPATIALLY-CONTROLLED ILLUMINATION COMBINED WITH RESCAN CONFOCAL MICROSCOPY TO REDUCE PHOTODAMAGE AND ENHANCE IMAGE QUALITY.

Venkataraman Krishnaswamia,b, Giulia De Lucab, Ronald Breedijkb, Cornelis van Noordena, Erik Mandersb, Ron Hoebea

aCellular Imaging, Department of Medical Biology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands; bvan Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.

KEY WORDS: Spatially-controlled illumination microscopy (SCIM), rescan confocal microscopy (RCM), live-cell fluorescence microscopy, image quality, photodamage

Fluorescence microscopy is an essential tool for live-cell imaging. However, excitation of fluorophores can induce photodamage. Hence, there is an inherent trade-off in fluorescence microscopy between image quality and photodamage. Recently, we introduced Re-scan Confocal Microscopy (RCM) as a new technology with improved signal-to-noise ratio compared to standard confocal microscopy, while reaching the highest possible confocal lateral resolution [1]. Earlier, we demonstrated that spatial control of illumination (SCIM) leads to reduced photodamage [2]. Here, we show that the combination of SCIM and RCM leads to reduced photodamage while preserving the and/or enhancing image quality. Implementation of spatially-controlled illumination in RCM uses a line scanning-based approach. Using information from previously acquired line images, the spatial illumination profiles for the upcoming lines is calculated by a prediction algorithm, during imaging. As a proof-of-principle, we show images comparing standard RCM to SCIM-RCM.
