In vivo Multiphoton Imaging of Mouse Brain

Chris Xu

School of Applied and Engineering Physics
Cornell University
Ithaca, NY 14853, U. S. A.
E-mail: chris.xu@cornell.edu

Over the last two decades, multiphoton microscopy has created a renaissance in the brain imaging community. It has changed how we visualize neurons by providing high-resolution, non-invasive imaging capability deep within intact brain tissue. Multiphoton imaging will likely play an essential role in understanding how the brain works at the level of neural circuits, which will provide a bridge between microscopic interactions at the neuronal level and the macroscopic structures that perform complex computations.

In this talk, the fundamental challenges of deep tissue, high-resolution optical imaging are discussed. New technologies for in vivo structural and functional imaging of mouse brain using long wavelength excitation and three-photon microscopy (3PM) will be presented. We will discuss the requirements for imaging the dynamic neuronal activity at the cellular level over a large area and depth in awake and behaving animals. Finally, we will speculate on the possible future directions to further improve the imaging depth and speed in biological tissues.