FMM-GUIDED 3D IMAGE RECONSTRUCTION USING COMPRESSIVE SENSING

Yubo Duan1,2, Shakil Rehman1, George Barbastathis1,3,4, Nanguang Chen1,2
1Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, 138602 Singapore
2Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, 117576 Singapore
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Shanghai Jiao Tong University -- University of Michigan Joint Institute 800 Dong Chuan Road, Minhang District, Shanghai 200240, China
E-mail: yubo.duan@nus.edu.sg

KEYWORDS: Compressive sensing, 3D image reconstruction, wide-field imaging, focal modulation microscopy (FMM)

ABSTRACT
Focal modulation microscopy (FMM) has been theoretically and experimentally demonstrated to be able to probe deeper inside scattering samples than confocal microscopy \cite{ref1}. However, the point scanning mode employed in FMM limits the imaging speed and restricts its application in dynamic imaging for live biological samples. On the other hand, 3D deconvolution microscopy provides fast imaging but the imaging volume is limited by out-of-focus light. Here we proposed FMM-guided 3D image reconstruction to enlarge the imaging volume while maintaining a fast imaging speed. To improve the contrast and resolution, we applied compressive sensing \cite{ref3} in reconstruction process for the samples with prior information, i.e. sparsity in a proper domain. The simulation results show benefits by applying compressive sensing in FMM-guided 3D imaging reconstruction.

![Image](image-url)

Figure 1: XY slices of (a) object, (b) blurred wide-field image with Gaussian noise (SNR=20), (c) image deconvolved by Wiener filter and (d) image reconstructed by compressive sensing.