Structured illumination microscopy (SIM) has grown into a family of methods which achieve optical sectioning, resolution beyond the Abbe limit, or a combination of both effects in optical microscopy. SIM techniques rely on illumination of a sample with patterns of light which must be shifted between each acquired image. The patterns are typically created with physical gratings or masks, and the final optically sectioned or high resolution image is obtained computationally after data acquisition. We used high speed ferroelectric liquid crystal microdisplay together with incoherent LED illumination for definition of the illumination pattern and a sCMOS camera for widefield detection. The high flexibility and precision of the generated patterns allowed us to use advanced processing techniques relying on the calibrated display-camera mapping, such as scaled subtraction in the case of optical sectioning SIM [1] and precise determination of spectral parameters in the case of super-resolution SIM. The freedom in choosing the illumination patterns also allows to tune the spatial frequencies and orientations of the patterns. Here we demonstrate the use of multi-frequency one-dimensional patterns to achieve both increased lateral resolution and high contrast optical sectioning with incoherent illumination (see inset in Fig. 1 C).

Figure 1: HeLa cells labeled with EdU-Alexa647 (a fluorescently tagged nucleotide that incorporates into newly replicated DNA, red) and fluorouridine (a synthetic nucleotide which is incorporated into active transcription sites, green), maximum projections of 20 sections, 0.1 µm step. A – widefield, B – optical sectioning SIM, C – super-resolution SIM.


Acknowledgements: This work was supported by the Grant Agency of the Czech Republic [P304/09/1047, P205/12/P392, and P302/12/G157], by Charles University in Prague [Prvouk/1LF/1, UNCE 204022], and by grant OPPK CZ.2.16/3.1.00/24010.