IN VIVO TRACKING METABOLIC INSULIN WITH TWO-PHOTON FLUORESCENCE OF GOLD NANODOTS

Pei-chun Wu1, Chien-Liang Liu2, Tzu-Ming Liu1,3,*, Cheng-Kun Tsai1, Hsieh-Chih Chen2, Jong-Wei Lin5,6, Ron-Bin Hsu7, Tzung-Dau Wang5,6, Chien-Cheng Chen4, Chi-Kuang Sun3,4, Pi-Tai Chou2*

1. Institute of Biomedical Engineering, National Taiwan University. 2. Department of Chemistry, National Taiwan University. 3. Molecular Imaging Center, National Taiwan University. 4. Graduate Institute of Photonics and Optoelectronics, National Taiwan University. 5. Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital. 6. Cardiovascular Center and Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch. 7. Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine. *Institute of Biomedical Engineering National Taiwan University.

No.1 Jen Ai Road Sec.1, Taipei, 100, Taiwan

Email: Tzu-Ming Liu (tmliu@ntu.edu.tw), Pi-Tai Chou (chop@ntu.edu.tw)

KEY WORDS: Insulin, Gold nanodots, two-photon fluorescence.

ABSTRACT—We successfully synthesized functional human insulin–Au nanodots (NDs)[1] for the \textit{in vivo} imaging of insulin metabolism. The insulin–Au NDs have efficient red to near infrared fluorescence and deep tissue subcellular uptake of insulin–Au NDs can be clearly resolved through a least-invasive harmonic generation and two-photon fluorescence (TPF) microscope. By in vivo investigations on mice ear and ex vivo assays on human fat tissues, we demonstrated that cells which have rich insulin receptors present higher uptake of administrated insulin. Fascinatingly, the insulin–Au NDs can even penetrate into lipid droplets (LDs) of adipocytes. We found that enlarged adipocytes in type II diabetes mice [2] appear higher adjacent/LD concentration contrast than small-sized ones in wild type mice by using this newly discovered metabolic phenomenon. The epicardial adipocytes samples of patients with diabetes and coronary artery disease (CAD) also show elevated adjacent/LD concentration contrast. Accordingly, insulin–Au nanodots supply a new approach to explore subcellular insulin metabolism in vivo or ex vivo with metabolic or cardiovascular diseases.
