Monitoring subcellular Ca2+-signaling using temporal unmixing

Stephan Junek1*, Michael Engelke2, Detlev Schild1 and Jürgen Wienands2

1 University of Göttingen, Neurophysiology and Biophysics, 37073 Göttingen, Germany
2 University of Göttingen, Cellular and Molecular Immunology, 37073 Göttingen, Germany

* Current address: Max-Planck-Institute for Brain Research, Neural Systems and Coding Group, Deutschordenstraße 46, 60528 Frankfurt am Main, Germany

Keywords: Ca-imaging, confocal, unmixing, lymphocyte, live cell imaging, 4D-imaging

For a plethora of cellular processes the mobilization of Ca2+ ions from intra- and extracellular sources is essential for intracellular signaling. A thorough understanding of the complex interplay of the Ca2+-profiles in the various cellular organelles requires simultaneous monitoring of Ca2+-levels in these different compartments. Such a recording however demands high temporal and spatial resolution combined with a need for organelle-specificity.

Using antigen-induced Ca2+-signals in B cells as a model system, we measure subcellular Ca2+-profiles of various organelles simultaneously by combining fast time-lapsed confocal microscopy with an algorithm to unmix superimposed fluorescence signals. Our real time imaging approach directly visualizes the molecular hierarchy of BCR-induced Ca2+ signaling events and moreover allows for the characterization of individual Ca2+ profiles in different subcompartments of the live B cell. This approach enabled us to provide evidence that SLP65 recruitment to the plasma membrane precedes Ca2+ mobilization (Fig. 1). Moreover, we identified distinct spatiotemporal Ca2+ profiles for the cytosol, the Golgi apparatus and the mitochondria during BCR-induced activation (Fig. 2). The developed experimental setup provides a useful tool to resolve the spatiotemporal dynamics in cellular signaling systems.

Figure 1: Simultaneous measurement of cytosolic Ca2+ and citrine-tagged protein SLP65 (1A) from individual lymphocytes reveals that membrane recruitment of SLP65 precedes Ca2+ influx (1B) during activation.

Figure 2: Temporal unmixing of Ca2+-signals from a single lymphocyte provides temporal (2A) and spatial (2B) profiles of the distinct Ca2+-fluctuations in various organelles during activation of the B-cell.