ADVANCES IN STIMULATED EMISSION DEPLETION MICROSCOPY

Joerg Bewersdorf1, Travis J. Gould1, Patrina Pellett1, Vladislav V. Verkhusha2

1Yale University, Department of Cell Biology, 333 Cedar St, New Haven, CT 06510, USA
2Albert Einstein College of Medicine, Bronx, NY, USA

E-Mail: joerg.bewersdorf@yale.edu

KEY WORDS: STED, super-resolution, live-cell microscopy, fluorescence nanoscopy

Stimulated Emission Depletion (STED) Microscopy overcomes the diffraction limit of light microscopy by spatially targeted quenching of fluorescence emission, usually in a ring pattern centered on the excitation focus of a laser scanning microscope. Since the first introduction of the principle by Stefan W. Hell[1], the technique has seen remarkable progress and now routinely generates biological images at tens of nanometers resolution[2].

We will present our latest results in the development and application of STED microscopy achieved at Yale. Specifically, a recently introduced novel far-red fluorescent protein[3] suitable for live cell STED microscopy using \textasciitilde750 nm depletion wavelength and advances in live-cell super-resolution imaging with a commercial 2-color Leica TCS STED microscope will be discussed. Furthermore, we will present our latest progress in the construction of a custom-built STED microscope (Fig. 1d-f).

Figure 1: (a-c) A mammalian cell expressing EB3-TagRFP657 which labels microtubules was imaged with a Leica STED microscope. (b) shows the area denoted by the white box in (a) in a magnified view. (c) shows a profile across the tubule as indicated by the white box in (b) and demonstrates that sub-100 nm resolution is achievable with TagRFP657. (d-f) 20-nm crimson beads imaged in confocal (d) and STED (e) mode with our custom-built setup. (f) shows the lateral profile through a bead demonstrating approx. 26 nm resolution.