SIMULATION OF LOCALIZATION MICROSCOPY METHOD UTILIZING QUANTUM DOT BLINKING

Anke Engbert¹, Jussi Forma², Pekka Hänninen¹, Juha Toivonen²

¹ Laboratory of Biophysics, University of Turku, FI-20520 Turku, Finland
² Optics Laboratory, Tampere University of Technology, FI-33101 Tampere, Finland
E-mail: anke.engbert@utu.fi

KEY WORDS: Localization microscopy, quantum dot blinking, sub-diffraction resolution

INTRODUCTION
The use of quantum dots as fluorescence markers in biological imaging offers advantages like photostability, narrow but tunable emission spectra, and a broad spectral excitation cross-section. It is possible to use the characteristic blinking of the quantum dots (QD) to enhance the localization accuracy of them [1]. If the signal of an individual fluorescent marker can be distinguished from that of the other fluorescent markers, the source can be localized with an accuracy of few nanometers. The high-resolution image can be formed by localizing of thousands of markers.

SIMULATION RESULTS
Experimentally determined statistics [2] was used to simulate the blinking dynamics of individual quantum dots. A time series of 2000 images was created with nine quantum dots using a diffraction-limited point-spread-function width of 250 nm. Blinking events were detected from the image series, and center positions of the events were recorded. As a result, the original positions of the nine quantum dots became visible despite of the blurry background created by the faulty detected events.

![Figure 1. Simulated data of 9 randomly placed QDs. a) Original position of QDs and diffraction-limited image of them. b) Resulted image after localization of QDs from 2000 diffraction-limited images. Scale bar is 200 nm.](image)
