LASER CUTTING OF YEAST MITOTIC SPINDLES BY A PICOSECOND DIODE LASER

Isabel Raabe, Sven K. Vogel, Jan Peychl, Iva Tolic-Norrelykke
Max Planck Institute of Molecular Cell Biology and Genetics
Pfotenhauerstrasse 108, 01307 Dresden, Germany
E-mail: tolic@mpi-cbg.de

KEY WORDS: Laser ablation, laser microdissection, confocal microscopy, live cell imaging, 4D imaging, image processing

Laser cutting experiments have lead to important discoveries in cell biology [1]. With this technique, it is possible to ablate specific structures inside a cell locally and with rapid time resolution. Previously, a femtosecond pulsed laser at 880 nm [2], as well as a nanosecond pulsed laser at 532 nm [3] have been used for mitotic spindle cutting experiments. Here we use a low-cost and easy to use picosecond pulsed 405 nm laser diode to dissect unlabeled and GFP-labeled spindle microtubules in the fission yeast Schizosaccharomyces pombe. Laser irradiation at short exposure times induced spindle photo-bleaching, whereas longer exposures resulted in partial or complete cutting of the spindle. The photo-bleached and partially cut spindles typically continued elongating. The completely cut spindles broke into two segments, which later reconnected to form a functional elongating spindle in ~50% of cases. Cell division proceeded normally in most irradiated cells, though the separation of the daughter cells was delayed in comparison with non-irradiated cells. We conclude that a picosecond pulsed laser diode can be used for precise ablation of intracellular structures in the smallest and most genetically tractable model system for eukaryotic cell division.

Figure 1: Laser ablation of the mitotic spindle.

References: