DISTORTION CORRECTION IN IMAGING INTERFEROMETRIC MICROSCOPY
AT THE 2/λ LINEAR SYSTEMS LIMIT

Alexander Neumann, Yuliya Kuznetsova and S. R. J. Brueck
Center for High Technology Materials, University of New Mexico,
Albuquerque, New Mexico, USA
E-mail: aneumann@chtm.unm.edu

KEY WORDS: High-resolution optical microscopy, Fourier optics, frequency space synthesis and restoration, interferometry, off-axis illumination, image processing.

We have previously demonstrated a resolution approaching the linear-systems limit (λ/4) with a modest NA = 0.4 objective, using Imaging Interferometric Microscopy (IIM), which allows the acquisition of high-resolution images using low NA objectives combined with multiple exposures, off-axis illumination, interferometric reconstruction and digital image processing. This concept was introduced initially in the context of the formation of images in imaging interferometric lithography (IIL) [1].

Here we describe a methodology for image reconstruction for the distorted images that result from non-paraxial effects when illumination source and the image plane are tilted to access the highest available spatial frequencies of the image. We approach the theoretical linear systems resolution limit of ~λ/4 (a maximum spatial frequency of λ/2) by increasing the coverage of the spatial frequency space using multiple exposures as shown in Fig. 1. The two inner circles correspond to the spatial frequencies of 0.4/λ (NA/λ) and 0.8/λ (2NA/λ), representing the frequency space coverage of conventional coherent and incoherent illumination microscopy, respectively. The inner set of shifted circles in Fig.1 extend to a radius of ~1.2/λ (3NA/λ) [2]. Increasing the angle of the illumination beam can extend can extend the coverage of frequency space only up to (1+NA)/λ. Additional frequency space coverage is provided using a second pair of off-axis exposures with a tilted image plane, shown as ellipsoids due to the frequency spectrum distortion. We evaluate the mapping between the observed spatial frequencies in tilted/off-set image and actual frequencies in the object (Fig 2), propose a method of frequency restoration, and apply this method to experimental results, demonstrating improved image quality.

In the present experiments, the frequency space coverage extends to 1.87/λ, represented by the outer set of shifted structures in Fig. 1; or to a pitch of 340 nm using a 633-nm source. We show reconstructed images obtained after Fourier spectrum restoration for the case of a binary x-y sample geometry with a linewidth of 180 nm (λ/3.5) (Fig. 3). The limit of resolution with conventional illumination would be only ~ 0.6λ/NA (~950 nm). This technique will be useful for solving defocusing problems, mask inspection, biological research and other applications.

References