3-D TRANSMISSION ELECTRON MICROSCOPY RECONSTRUCTION OF A COMPLEX WO$_3$ GYROIDAL KIT-6 STRUCTURE

E. Rossinyol,1 J. Arbiol,1 G. Dezanneau,1 B. Tian,2 D. Zhao,2 L. Solovyov,3 F. Peiró,1 A. Cornet1, J.R. Morante1

1EME Enginyeria i Materials Electrònics, Departament d’Electrònica, Universitat de Barcelona, C/ Martí i Franquès 1, E-08028 Barcelona, CAT, Spain
2Molecular Catálisis and Innovative Materials Laboratory, Dep. of Chemistry, Fundau Univ, Shanghai 200433 China.
3Institute of Chemistry and Chemical Technology, K. Marx Av. 42, Krasnoyask 660049 Russia.

E-mail: cornet@el.ub.es

KEY WORDS: 3D transmission electron microscopy reconstruction, WO$_3$, gyroidal, semiconductors.

ABSTRACT
In the last few years all leading research groups in materials science have been synthesizing a huge variety of nanoscale materials. These nanomaterials are meant to be used for future applications as functional materials; nanosensors; electronic, photonic or magnetic nanodevices or even nanomachines. The properties of these nanomaterials are the future, however some of these materials have complex 3-D structures that need to be visualized and analyzed, as a quality control of the synthesis process or just to understand their structure [1]. In this work we will have a look to the promising 3-D Transmission Electron Microscopy related techniques applied to materials science. To illustrate the technique we will show an example of 3-D reconstructed nanoscale material. In this context, we will show the TEM 3-D reconstruction of a WO$_3$ gyroidal KIT-6 structure and the posterior modeling of such a complex structure.

FIG. 1: (a) TEM bright field micrograph of the KIT-6 WO$_3$ structure. (b) Detail of a single WO$_3$ aggregate.

References