Nonlinear Bio-photonic Crystal Effect of Silica Deposition in Plants

Ping-chin Cheng¹ and Chi-Kuang Sun²

¹Division of Bioengineering, Dept of Electrical Eng. and Dept of Diagnostic Radiology, National University of Singapore, Singapore
²Graduate Institute of Electro-Optical Engineering and Dept. of Electrical Engineering National Taiwan University, Taipei, Taiwan, Rep. of China

KEYWORDS: Multi-photon microscopy, polarization microscopy, SHG, THG, Polarizing microscopy, X-ray microscopy, plant cells

Silica deposits are commonly found in crop plants such as rice, wheat and maize. This amorphous silica deposit can be found in most of the epidermal cell wall and in specialized dumbbell-shaped epidermal cells (Si). The silica deposits found in the dumbbell-shaped cell is frequently referred as biological opals. The silica contents can reach as high as 30% in dry ash weight in certain rice variety and is believed to be responsible for the rigidity of the plant and resistance to pathogens. Due to hard and brittle nature of the silica deposit as well as its high refractive index ($\eta = 1.42-1.44$ [1]), the technical difficulties encountered in the study of silica cell are similar to the study of hard tissues (tooth and bone) in animal system. Using confocal microscopy and X-ray microradiography, we have been able to gain insight in the structure of silica cells. In maize, silica cells are generally found on the adaxial surface of the leaf, abaxial surface of leaf sheath, the surface of the stem (excluding the nodal region) and in adaxial surface of glume and husk. X-ray contact microradiography shows X-ray dense deposition in epidermal cell wall and in specific dumbbell shaped silica cells located above minor veins. SEM image and replica of leaf sheath surface reveal the location and distribution of the silica cells. EDS image correlates well with the X-ray microradiograph indicating that the X-ray dense material are indeed containing Si. Silica cell can be isolated together with the epidermal cuticle by the treatment of ZnCl₂-HCl mixture [1]. After chemical isolation, the silica deposits are attached to the continuous cuticular sheet. The dumbbell shaped silica cell exhibits strong birefringence properties and the retardance and slow-axis can be determined by the use of dynamic polarization microscope (Pol-Scope, CRI, Cambridge, MA). It was reported that the dumbbell-shaped silica cell of rice (Oryza sativa) exhibits strong polarization-dependent SHG properties. It is believed to be the result of concentrically orientated silica deposition in the opaline silica. The term of biological photonic crystal-like structure was use to described the strong SHG properties of the opaline silica. Maize silica cell also exhibits similar nonlinear properties [2].


*On leave from the State University of New York, Buffalo, NY, 14260 USA